This document describes the caching methodology used in PODPAC, and how to control it. PODPAC uses a central cache shared by all nodes. Retrieval from the cache is based on the node’s definition (node.json), the coordinates, and a key.

Each node has a Cache Control (cache_ctrl) defined by default, and the Cache Control may contain multiple Cache Stores (.e.g ‘disk’, ‘ram’). A Cache Store may also have a specific Cache Container.

Default Cache

By default, every node caches their outputs to memory (RAM). These settings can be controlled using podpac.settings.

Settings and their Defaults:

  • DEFAULT_CACHE : list

    • Defines a default list of cache stores in priority order. Defaults to ['ram']. Can include [‘ram’, ‘disk’, ‘s3’].

    • This can be over-written on an individual node by specifying cache_ctrl when creating the node. E.g. node = podpac.Node(cache_ctrl=['disk'])

    • Authors of nodes may require certain caches always be available. For example, the podpac.datalib.smap.SMAPDateFolder node always requires a ‘disk’ cache, and will add it.

  • DISK_CACHE_DIR : str

    • Subdirectory to use for the disk cache. Defaults to 'cache' in the podpac root directory.

  • S3_CACHE_DIR : str

    • Subdirectory to use for S3 cache (within the specified S3 bucket). Defaults to 'cache'.


    • Automatically cache node outputs to the default cache store(s). Outputs for nodes with cache_output=False will not be cached. Defaults to True.


    • Enable caching to RAM. Note that if disabled, some nodes may fail. Defaults to True.


    • Enable caching to disk. Note that if disabled, some nodes may fail. Defaults to True.

  • S3_CACHE_ENABLED: bool

    • Enable caching to S3. Note that if disabled, some nodes may fail. Defaults to True.


To globally disable automatic caching of outputs use:

import podpac
podpac.settings["CACHE_OUTPUT_DEFAULT"] = False

To overwrite this behavior for a particular node (i.e. making sure outputs are cached) use:

smap = podpac.datalib.smap.SMAP(cache_output=True)

Different instances of the same node share a cache. For example:

>>> coords = podpac.Coordinates([podpac.clinspace(40, 39, 16),
                                 podpac.clinspace(-100, -90, 16),
                                 '2015-01-01T00', ['lat', 'lon', 'time']])
>>> smap1 = podpac.datalib.smap.SMAP()
>>> o = smap1.eval(coords)
>>> smap1._from_cache
>>> del smap1
>>> smap2 = podpac.datalib.smap.SMAP()
>>> o = smap2.eval(coords)
>>> smap2._from_cache